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Abstract

The dynamics of a particle moving near a classical ring is studied under a Hill-type approximation. A
classical ring is comprised of particles of equal mass arranged symmetrically about a massive central body,
tile particles having a umniform rotation ratc. Two distinct equations of motion are found which describe
the motion of a particle near such a ring. The fundamentals of each set arc studied. Then a family of
symmectric, planar periodic orbits arc computed. Finally, using the analysis of the derived cquations of
motion, a mecchanism is conjectured which describes how a ring may gain mass. This mechanism is
appealing as it is self-limiting and ceases to exist when thering is still stable, yet more massive thanits
initial configuration.

1 Introduction

The motion of a material point is investigated under the attraction of a “classical” ring. A classical
ring being a systemn comprised of P’ ring particles of equal iass arranged symmetrically about a
central body, the entire ring having some specified rotation rate. Such a ring may be stable if the
mass of eachring particle is small enough as compared to the centralbody mass (Reference [1 3]).
Therehas beenrecent and historical interest in this simple model of a ring (References [8], [1 O],
[12],[]3],[]4],[]8], [9]), driven inpart by the syminetry of the ring and its simple specification.
I'he current problem of the motion of a material point under the attraction of such a ring has been
investigated earlier (Reference [14]) when thering is comprised of a finite number of particles. The
current analysis deals with a particular approximation whichsimplifies the earlier study and brings
out significant results. The approximation introduced here is a variant, of the Hill approximation
first used by Hillin the three-body problem to study the motion of the 1110011. The approximation
assumes that the satellite and ring arc close to cach other, that the central body nass dominates
the systern and that the number of ring particles is large. After application of the approximation
thesystem consists of a line of equally spaced ring particles extending to infinity. The actuations of
motion contain gyroscopic terms and retain the major effect of the ceniral body.

Inderiving the approximate equations two special cases arc found.The first case results in
equations of motion directly related tothe classical hill equations of motion for the moon. The
sccond case is unique and has an interesting and useful interpretation and application to motion
near aring. T'hie two cases arc related by atransformation which is singular for certain parameter
values. The basic dynamnical properties of cach case arc discussed. Thena family of periodic orbits
inthe second case is studied numerically. The st ability properties of these orbits indicate the
prescnce of regions of stable and unstable orbits adjacent to the ring. Finally, in analyzing the
results a possible self-lilllitiag mechanism for ring growth is identified.
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Figure 1. Geometrical Representation of the 1' I'article Ring

2 Equations of Motion

Consider the equations of motion of a inassless particle M as attracted by a central body of unit
mass and aring with 1' particles of equalimass st equally spaced about the central body at a unit
distance. A rigorous derivation of the equations of motioninthis case canbefound in Reference
[16], Chapter]l.
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"The vectors r; denote the positions of the ring particles, the vector r denotes the position of the
particle M. €2 is the constant magnitude angular velocity vector of the coordinate systemn.

The P ring particles arc assuined to bein a relative cquilibriuin configuration with respect
to themseclves and the central body. Assuming that the central body is at the center of mass of this




system, the relative equilibriuin solution of thering is defined as:

r; = Rj ®3)
y = 1,2,...,1
|} = w (4)
it r-1
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w® = 1+ Zkz:zocsc(LO), (5)

The vectors R} have the propertics:

Ri] = 1 (6)

R} . Rp = cos20(k ~ j) (7)
;- Ry| = 2fsin 0k - )] (®)
Rp,; = R (9)

I'he parameter w 18 the rotation rate of the ring and 0 = 7/ is the vertex half-angle of the

P-polygon which thering describes. Such aringis stable against linear perturbation if the mass of
cachring particleis small enough ([13]):
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The function {(n) is the Riernann Zeta function.
Notc that Zf:] R} =0and discard the final terin in the summation of Fquation 2. Usc
property 9 to renumber the summationin Equation 2 over theintegers:

i mrem A =100, s 1y =

where if P> = 2rthen™i=randre =7 — 1, and if >=2r + 1 thenry = P2 = r.The vector
equations of motion then become:
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3 The Hill Approximation

These equations will bestudied under the assumption that the body M remains close to the ring.
This assumption is fornalized by introducing the 1lill approximation.

The Hill approxiination is applicable to threc-or-inore-body systeins with a few basic
characteristics:that there is a massive body, about which orbit, a number of bodics with small
mass; that (some of) these bodies with siall mass are relatively close to each other; and usually
that the center of mass of the smallbodies follows a circular orbit aroundthe larger body. A
genceral application of this approximation to n-body systems is given in Reference [1 5]. Under the




approximation, the full attraction of the small bodies on cach other is usually retained. By being
close to a circular orbit about the central body, the netl attractive and centrifugal forces nullify
cach other inthe vicinity of the sinall bodies, the tidal force then arises from the mismatch
between these cancellations, The approximation ignores the parallax of the central body with
respect o the small bodies.

The hill approximation as described above does not fit the current systern, since the small
body system (ring plus the massless body) has its center of mass co-located with the central body
andthering particles may be far fromeach other. However with inodificat ion the approximation is
applicable to the current systemn.

Without loss of generality, give a special status tothering particle located by the vector
R} Transforin the coordinate system of the equations of motion so they are centered on this
particle. Enforce the condition that the satellite is close to the ring by introducing ascaling factor
yt' 13, where jt is the mass of each ring particle and st <<1 is assumed:

r = Rp+ yi 3% (17)

The factor x isan arbitrary scaling factor to be specified later.
' Recall that R}, is a relative equilibrium solution in the rotating reference frame, hence
b =R} = O and:

0D x (2 x R}) = —w’Rj. 18
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Substitute Transformation 17 into Equation16:
. , « 4~ /8% 13 =
RIE 2 AN I APy o) B
vl i x (24 0 xE)] = W~ R g o5 T T
1 /
- i ) Ri - Ry -t (19)
;2= TR ST, =

The notation 3 3% * = 370%, 4 4 is used.

in the classical application of the Hill approximation the suinmation term is not present,
([19], Chapter VI, §498-493 ). Using |R%,| =1 and si!/3 < 1, note the following expansion:
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The terms of order ;2/3 contain the parallax. Substitute Equation 20 into the Equation19 and
note that (w? — )R} = O(;t) and hence is grouped with the higher order terms. Then divide by
L 1/3 .
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The expansion used in Equation 20 is not applicable to the sumimation term in Equation 21
as |Rj — R},| = 2fsin Okjandmay be arbitrarily small for 6 sinall (P large). ‘I'here is a dichotomy
licre as some of the ring particles arc far enough away to have less than O(xs'/?) influence, yet
others may beclose enough to have a significant, influence. This is dedt with in the following
section. Formally, the Ihll approximation is completed by aking the limit yo — 0, the higher order
terins then disappearing.




4 Modification of the Ring Potential

In this section thering force term is studied:

P& RY - Ry — ! 13

i
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Its imiting form will be found as g — O.
Introducc a Cartesian realization of the vectors involved:
R; = cos 20ki + sin 20kj (23)
Fo= #+4§)+ k. (24)
Introduce an assumptiononthe mass of thering particles
uo= a0? (25)
g .
= P (26)

where o is not necessarily stnall. This assumption is reasonable as all the relevant, liinits on p
presented earlier and found elsewhere have been of this general functional form (References [8],
[13], [14], (18]). This scaling allows for discussion) of the loca geometry of the ringinthe vicinity of
R}, independent of the number of ring particles. For a stable ring, the boundon o is:

o < o0g (27)
16
og = (28)
7(13 + 4/10)((3)
= 0.0741352 . . . .

Introduce the Cartesian realizations and thenew form of yginto Equation 22 to find three
scalar expressions for the ring fore.c:
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The above equations are now formally of thesame order as the other termsin Equations 21.

As x and o remain non-zero as yt— O, this implies that # — O (I>—o00). Application of this
limit will send the higher order terms O(xo'/30) in quation 21 to zero. Introduction of this
formal limit then yiclds the modified form of the equations. Inapplying the limit assumne that £ is
a fixed integer, then:

sin 0k




T'his limit is assumed to be true for all k.However, for arbitrarily large k (on theorder of P/2),
this is not a good assumption by itself. However, it nay properly be applied to these equations.
Sce Appendix A for a rigorous discussion of this andapplication of the limiting process to the ring
force equations.

After application of the limit the force terms become:
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where dl thesummationsare convergent.

5 Approximate Equations of Motion

Apply the Cartesian realization to Equations 21 and introduce the modified ring force terins from
Equations 34, 35 and 36. Notethat €2 x (2 x ¥) = —¢ 42k + O(;)and R}, =110 find:

el
!
N
I
o
=0
I
1
i
w

XS 2 3/2
k=-o [524 (X%f/a - 1/) +4 zz]
A . 1 m\ g_ ,2k3
U428 = —— xol/ 577 (37)
X©Z - . N2
e [“ZWL (;%73 - 1/) 4 22]

E T 9 3/2
e ["2 + (s - ) 4 52]

In this approximation the ring becomes a straight line of equally spaced particles. Sce
Figure 2 for a representation of the geometry in these equations of motion.
The coordinates of the particles arc (& = O, gk:ﬁé 5,2, =0), k=0, 41,42,.... The
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distance between each particle 1sX?2,3.

It is desirable to find a potential function for the forms inthis system. If such a potential
canbe found, thenanenergy integral exists as the system is time invariant. Formally integrate the
following partial differential equations:
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Figure 2: Geometrical Representation of the Close Ring Approximation

This yields a potential of the forin:

- 3 1 i
V(@ 9,2) = —#?— 23 ! 1

X 2
b= \/12 + (325 - 9) +22

This sutmination is not defined as it is asymptotically equivalent to the sumimation

- C. (39)

22 1/k which diverges. Note that the partials of V are convergent series and hence the

divergent part of V may be considered to be constant. This leads to a a particular choice of the
constant (' to kill the divergent terins, yielding the potential:

V@, §,3) = S PR e 1 i
BE = 5 1 RN
‘}" , 1/3
i= Y '| ] 2 (40)




As canbe verified, this summation is convergent for al non-singular values of the coordinates.
With this potential the energy integral is defined as:

1 /.2 L2 .2 PN =9
5 (ar +y +2 ) = V(@u2)-C (41)
where (7 is a finite constant.

51 Modified Hill Equations of Motion

Now consider the arbitrary scale factor y. I'wo possible values for this factor are considered which
lead to two different sets of equations of motion. First consider the equations for x = 1. Retainthe
tilde notation for this case. The equations of mation becoine:

P2 = Vi
yt2w =V (42)
:’Zi = VZ’
3 1 1
‘/ fi)’l/):é = *52 - -22 e ————
( ) 2 2 \/572 + g2+ 22
ad 1 1/3
+ 2 : (43)
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In these coordinates the ring particles are scparated by a distance 2/0'/3 Thus, if ¢ is
small, the dist ance belween ring particles becomes large. This systemn is useful mn discussing the
dynamics of a body close to a ring particle,but not directly intcracting with neighboring ring
particles. If o — O the llill equations of motion are recovered. Nucto this property this system is
called the “Modified Hill” equations of motion.

52 Close Ring Equations of Motion

A sccond possibility for the scale factor is x = 1/¢'/3. Denote the coordinates in this case as «, y
and 2. T'hesc new coordinates are related to the previous coordinates by the transformations:

_— 1

X = ;73 X

. 1

y = 7Y (44)
o

2= ol/3 d

These transformations become singular as o — 0, yet from the derivation of the equations of
notion the approximation process is valid for al o wheny =1/¢'/3, since the higher order termns
in Equation 21 are then O(6) and still go to zero under the limit.

For this value of X the equations of motion become:

b

r-2y = Vi
y+2e =V, (45)
P =V
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Then encrgy integral becomes:

% (i?z + 92 4 2"2) = V(z,y,2)-C (47)
Inthese coordinates thespacing betweenring particles is now a constant distance 2 and docs
not dependono.Dueto this property these equations of motion are more efficient for studying
the orbit of a particle whichmay travel fromn ring particle to ring particle. If & — 0 a simple set. of
integrable equations is recovered corresponding to lincarized motionabout a circular orbit,.
These equations are called the “Close Ring” cquations of motion. Inthe following sections
the basic properties of the equations of motion 42 and 45 are studiced.

6 Invariant Transformations

The following discussion decals only with the Close Ring equations of motion (Equations 45),
although al the results arc easily carried over to themodified Hill equat ions of motion (Equations
42).

liquations 45 arc invariant under several different transformations, These transformations
highlight the structure in the equations and alow for simplifications to be introduced,

The z equation of motion is invariant under two separate transformations:

(2,7) — (-z,7) (48)
(2,7) + (2,-T). (49)

The firg transforimation may always be applied to any given three-dimensional solution, yielding a
mirror iinage motion inthe —2 space. The second may only be applied in conjunction with the
invariant time reversal transforinationin the (x, y, 7)space discussed later. The following
discussion only considers the (x,y) coordinates.

Thesimplest invariant transformationthe equations posses (other than time invariant.c) is:

3, y, - (z,y+ 2k, 1) (50)
ko= 0,£1, £2,....

The geometry of the problem does not change under this transformation.
A second invariant, transformation is:

(#, y,7) — (2, —y, —7). (51)

This is a space-time syminetry transformation. This transforination,in conjunction with the
previous transforimation, is usefulin establishing the existence of symmetric periodic orbits.
A final invariant transformation is

(2,9, 7)— (-r, -y, T). (52)

This is a space symnetry transformation. Additional invariant transforinations exist, but arc not
needed inthe ensuing discussion.



The invariaunt transformations are useful in establishing the existence of space symmetric
imotions. Inthis Context consider theinitial conditions andtimme under the invariant,
transformations:

(Toy Yoy B0, Yo, T)  — (o, Yo + 2k, To, Yoy T) (53)
k= 0,£1,4£2, . ..

(%0, Yo, 80,0, 7) — (To, =Yo, =0, Yo, —T) (54)

(o, Yo, Tos Yo, T) — (=20y =Yo, —Toy —Yo,T). (55)

If somesct of initial conditions transformsinto itself, then the motion starting from these initial
conditions will have a special space symmetry property. Several special properties are considered
below.

Transformation 53 by itself results in a reduction of the y-coordinate space to the strip
(= 1, 1], Usedin conjunction with the other transforinations it proves quite useful.

Transformation 54 will transforin into itself if y,=a, = O. Ducto the time reversal this
implics that the initial conditions (2,, O, 0, ¥,)lead to aspace syrmnetric motion with respect to
they, = O axis. Combining transformation 53 with transformation 54, the initial conditions
(20,k,0,90),k = O, +1, +2,... lead tospace symmetric orbits about y, = k.

Transformation 55 is useful in two ways. Given any motion started inthe 2, >0 region of
the space, a companionmotion starting inthe 2, <0 region of the spat.c may be inferred.
Furthernore, if a discrete set of initial conditions are found which can be transformed into
themnselves, then thiese initial conditions arc anequilibriumn point of the system. This is so as the
time is not reversed in this transformation and hence the motion must remain space symmetric to
itself for alltime, a property shared only by anequilibriuin point. Theonlyinitial condition which
transforms to itself under the action of this transformation aone is the trivia sct (O, O, 0, O), which
is discounted ductothe singularity at, these coordinates. If Iransformationb5 is combined with
Transforiation 53 the initial conditions (O, 2k + 1, 0, 0), k= O, +1, 4:2, . . . will transforminto
themselves and arc not located at singularitics. Thus, these points are equilibrivin points and lie
midway between cach ring particleonthe e = O axis. Thesc equilibrium points arc discussed in
following sections.

Theinvariant transformations also allow the coordinate space to be restricted to:

0<e <0
“l<y<1 (56)
0 <2< oo0.

Generally only the initial conditions arc restricted to thisspace. ‘1'lien the resultant motion is
allowed to travel over the whole space.

7 Modified Hill Equations of Motion

Somec basic properties, results and uses for these equations are noted. The equations arc restated
as’

P2 = V;
y+2 = Vg (57)
o=V

where the potential is:

. 3,
V(z,9,2) = 55&-
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These equations are most interesting for small cr. Expand the potentialin orders of ¢'/3 0

find:
s oa sy = 1. I 1 1, 1 ~9
Vo2 = g [siec@at g @R+ focw
1 .
e+ O(0/?), (59)
/32 424 52
The function ¢(3) = Y°p2;1/k®= 1.20205 . . . . Truncate the higher order terms in the potential to

find the approximate equations of motion:

iooj = [3 -~ qe¢ ] e
(3)| 2 0 7 g
L g
g4 22 = *UC(tf)J - [*”:‘1/?]3/2 (60)
P 1 . z
z — [1 + Za(({i)] - o y"?].s/z'

These equations arc valid for small ¢ only. It is directly apparent that the Hill equations of motion
arc rccovered as a-— O.

This system, under the coordinate restrictions giveninliquations 56, has several equilibrium
points, some of whichare not presentinthe Classical hill equations of motion.T'ake 2= O to fing]
the two conditions to be et for an equilibrium point to exist:

1
3- -0—43 I (61)
( ®- a2 4 *ﬂ”)

(_ac( - 1“2]5”) ;. ©)

There are three possibilitics to investigate: (84 O, §= 0), (2= 0O, §# O) and(## O, § # O). Fach

is considered in turn.
First consider the case wheny = O and &# O. Then the conditions 61and 62 reduce to:

1 1
0 = 3—~ZUC(3)*B~|—J (63)

o
i

o
!

Take & >0 to find the equilibriuin point denoted El with coordinate:

ho= (%)w [1*113%(3)]‘1/3 (64)
~ (%)W [1+3isa<(3)]. (65)

There is a corresponding equilibrium point, denoted E2, with coordinate 2, = —2; . These
cquilibrium points are the generalization of the equilibrium points in the Hill equations of motion.
They arc saddle points and hence are unstable.
Next consider the case & = O, # # O. Then the conditions reduce to:
0 = loca- (66)
= 0 — T
2 |9[*

11



Take § >0 to find the equilibrium point denoted 3 with coordinate:

A 5 \1/3
ya = (m) (67)
1.185...

o173

For o siall this equilibrivin point is far away from the origin. ‘T'his equilibrium point is more
properly discussed using the Close Ring equations of motion in Scction 8.
Finally consider the case whend # O and y # 0. Then the conditions reduce to:

1 1
0 = 3—- S
79¢B) EE (68)
0 = loc3)-
T2 |73 (69)
where 7 = \/ail + 72,
These conditions are satisfied only if
. (70)
¢(3)
~ 3327 . ..
| 13
P (71)
(2)
~ 079 .. ..

This is outside the realm of applicability for the approximationinade inderiving these equations of
motion, and this point does not cxist in Equations 57. This possibility is only mentioned since at
this value of o Equations 60 are integrable due to the existence of au angular momentum integral.
This may be of mathematicalinterest as it provides a modification to the Hill cquations which
results in an integrable system,

A prime application of Iquations 60 wouldbeto any analysis which traditionally usesthe
Hillequations to modelring or asteroid dynamics. ‘1'here are a number of such studies and it
wouldbe of interest to recompute results using these mmodified equations ([1], [2], [4], [5], [6], [1 1],
[17]). 'The current inodelincludes the effect of neighboring particles, parameterized by u, on the
dynamics of a smallparticle when a close ecncounter with aring particle occurs. These equations
might aso beapplicable to the study of shepherdingin which the classical hill equations of motion
are often used.They have a natural “boundary condition) as they provide a finite value of they
coordinatcat which there is a spacesymnetry. 1 usual shepherding studies using the 1ill
equations theinteractionmust be carried to § = z:00.

In performing such new analyses it is possible to first consider the results foundinthe
traditional Hill equations and then consider the modification of thesc results as o increases from O.
A prime application of this type of analysis would beto generalize the Variation orbit in the Hill
cquations.

The Variation orbit is ananalytical periodic solution of the Hill equations ([19], Chapter VI,
$503-51 5). It isexpressed in theform of a Fourier series to any desired accuracy. It is possible to
generalize the analytic forin of the solution toinclude the parameter o and its effects, thus finding
a periodic orbit inthe modified Hill equations by analytjccontinuat jon. No qualit ative differences
arise from this change for o small. We do not explicitly state our results of this analysis here.

12




8 Close Ring Equations of Motion

Now consider the Close Ring equations of motion. These are restated as:

P2 o~

it 2% = VY, 72
z = Vz
. — 3)2 ]2 i

V) = ot gt e

!
+Uk_z:, 2 : o, 2 2Jk|
=—co \/1, + 2k —-y)" +2
These equations are more novel than the previous set in that they allow for thesimple description
of orbits which travel fromone ring part, icle to another.
These equations allow simple analytic solutions in very fey cases andihusit is preferable to
st udy them numerically. This task is simplified as there is only one parameter in the equations, o.
Note, however, that the infinite suinmations inthe potential and force terins can only be computed
o afinite accuracy and prove to be the inost time consuiing aspect of the computation.
Again, consider the equilibrium points of this system. First take z = O to find the conditions
for cquilibrivm points to exist:

(73)

[\, .t
3 -0 Z - (74)
[ k=-w0 (Qk— 2323‘
o )y
y -2k
0 = -0 P (75)
b oo [27 4 (2% - 1/)2]3/2
The expression 75 is identically zero only for y = O, 41,42, ..,. Thereare two distinct cases
to consider:y = O andy = 1.
Takey= O andz> O. Assumecz # O to avoid thesingularity. Condition 74 becomes:

0= 8-0 3 — (76

k=—oo [a:m:‘é;)z]bfi/i :

o
1

If 2 <<1 ando >0 the quantity onthe right hand side will be negative (clue to the k= O
term). Conversely, if # >> 1 and o < oothe quantity will be positive. Thus there is at least one
cquilibriumn point along the 2 axis. i analogy with the Modified Hill equations call this
cquilibrium point E]. Borrowing the result, fromnthe Modified 1lill equations the coordinate of this
cquilibrium point is, approximately:

o\1/3 o
i (2 14 Ze@y+ - 77
: (3) 1+ 36531 (77
There is a corresponding equilibrium point E2 located at #2 = —2; Note that as ¢ — 0 in this

system the 1 equilibrium point moves into the origin. Contrast this with the El equilibrium
point in the Modified Hill cquations (Equation 64) where the equilibriuin point moves toward a
fixed, llol]-zero coordinate as o decreasecs. This highlights the difference between these two
dynamical systeins.

That there is only oneequilibrium point along the positive o axis is established as follows.
Let 2% be an equilibrium point, then for all 2 > 2* the inequality holds:

503 L ey

beTeo [0 4 (202 b2 123 (2k)7*

0. (78)
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Thus, if 2* is an equilibrium point, there are no equilibriuin points > 2*. Comnbine this with the
fact that there is at leasl one equilibrium point onthe axis to conclude that there is only one
cquilibrium point on the positive z axis.
As in the previous cases, these equilibrium points are saddle points and hence are unstable
Next consider y = 1 and « > O. Condition 75 becomes:
S 1
0 = 3 -0 o
SR R
Note thatz = O will satisfy thecondition for al o.'Fhis is the equilibrium point found by
the symmetry transformation analysis and corresponds to the equilibriuin point briefly discussed in
the Modified Hill equations (Equation 67). If ¢ is sufliciently sinall, this will be the only
cquilibrimin point,. If o is large enough, there will be additional cquilibriumn points along they = 1

(79)

axis.
Iirst consider the 2 = O equilibrium point and its stability. Computing the second partials
of the potential function evaluatedat the equilibrium point yields:
7
va‘a‘lo =3 - 206(3) (80)
7
Vyy lo = 79¢(3). (81)

Vyylo is always positive but Vir|, is positive only for o < 12/7¢(3). The sign change in Var|o
corresponds to a bifurcation of new equilibrium points and is discussed shortly.

Thus, for o siall enough the equilibriumn point is a local minimum of the potential and inay
be stable. T'he characteristic equation for assuined harinonicmotionin the vicinity of the
equilibrium point is:

T

)‘4 T]-" %07(3)14

The controlling stability condition is then:

O PR LORCEC)) (82)
L

AN

47%”24(3)2 - 9210((3) +1>0. (83)
T'his lcads to a bound on o for stability:
o < O, (84)
4 1
oy, = e 85
b 7¢(3) 13 + 44/10 (85)
- —g]-o’s
~ 0.01853. .

Note that this is exactly 1/4 the value of the stability boundon the ring. T'his result also
corresponds with the asymptotic result found when the number of ring particles P is finite, but
large (Reference [14]). The implications of the existence of this stable equilibriumn point are
discussed later. The encrgy parameter C takes on aspecial value at these equilibriumm points:
Chr, o(l +2In2) (86)
= 2386 ...0

I

Now consider the possibility of other equilibrium points along they = 1 axis. The condition
to satisfy in this case is
>
o= 33U Yy —— 1 — (87)
k=-o0 [~ +- (2k -~])2]3/2
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This condition may be satisfied if and only if o> 12/7((3) = 1 .426.... Again, if there isan
cquilibriuin point for @ > 0, then it is unique.

As noted before, for o > 12/7<(3) the 2 = O equilibriuin point becomes a saddle point. The
x> 0 cquilibrium point, is then a local minimum of the potential function. The stability of these
points are not studied, however, as they correspond to an unstable ring (u > 0s)-

9 A Family of Periodic Orbits

A specia family of periodic orbits are now studied using the Close Ring equations of motion
(Equations 72). This family consists of planar orbits syminetric about they = O and y = 1 axis.
T'his family shows some remarkable properties which may inspire the study of this system.
Unfortunately the family cannot currently betraced to terminationdueto accuracy and modeling
constraints. Sce Figure 3 for some representative periodicorbits for a specific value of . Note that
some of the members of this family encircle the E3 equilibrium point

0 | T
Ring la/r:iiclc ‘
lMotion
-0.5
E3
> -1
-1.5
Ring }’arti;c]c
5 ‘ i 1
-1 -0.5 0 03.|5 1 1.5 2

Figure 3: Symmetric Periodic orbits: o =op,

The family of orbits discussed in this section are al found numerically. The special form of
theinitial conditions for space-symmetric orbits (&, = yo = O) reducethe initial conditions to the
pair 2,, ¥,. The energy integral may be usedto remove one of these conditions. Thus there are
three paramcters to be varied to find a periodic orbit: x,, C, 0. A specific famnily of periodic orbits
describes a surface in this three-dimensional parameter space. For this discussion the parameter o
is fixed and the parameters 2, and C are computed for a particular family. The family then
describes a curve in this two-dimensional parameter space. These curves are computed for several
values of o.

The planar and out-of-plane monodromy matrices are also computed for these families to
determine the stability of the orbits. Additionally, the possibility of intersection of this family of
periodic orbits with other families is considered. Some of the following theoretical discussion
(Section 9.1 - 9.4) is borrowed from Hénon’sclegant analysis [3]. Theresults are briefly restated as
they are being applied to a set of cquations not dealt with previously in the literature.
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9. | Reduction of the Equations of Motion

Whendealing with numnerical solutions to the equations of motionit is possible to introduce
theoretical reductions to the equations which are not feasible analytically, 'I'wo such reductions are
applied to the dynamical systemn.

First. consider thecnergy integral. Formally, the integral allows for the eliinination of onc
variable from consideration. Thus, conceptually, motioninthe dynamical systein may be described
by three variables plus a specified value of encrgy, C'. Assuine that the variable g is eliminated via
the energy integral. Then the system is described by the threc variables 2, y and & and the encrgy
paramcter C. Giveninitial conditions, these solutions arespecified as:

2(1) = hy(2e,Yo, a0, ;1) (88)
W) = ho(Ter o ior i) (89)
ety = hg(2o, Yo, 20, C31). (90)

of interest are the special initial conditions which start at y, = O and at some later time cross the
value of y defined as yp = k3 b =0,41,42, .. ..

Under some mild restrictions a second reduction may be introduced, this reduction being
the Poincaré Map. A Poincaré Map is constructed by findingtwo surfaces inthe phase space
which the solution is transverse to. Then the solution between intersections with these surfaces is
disregarded (assumingit is continuous andsmooth)andone only considers the mapping of the
solution fromone surface to the other.

In this system the natural candidate surfaces arc y,andy;. Thetransversality conditions
arctheng, # O and yx # O. For the orbits considered, i, # O is always fulfilled by choice. In some
instances yp = O occurs, but another value of kimay always be chosen to reintroduce the proper
iransversality condition.

Under the Poincaré Map, the dynamical systern is reduced to two non-linear maps:

rr = [(®,,%,,C) (91)
Ty = g(a?o,:ito, C). (92)

Situple analytical forms for these maps are known only inthe trivial case wheno = O. Thenaps
are usually computed by numerical integration of the equations of motion.
92 Computation of Periodic Orbits

With the above reduced systemn, the necessary aud suflicient conditions for a space-symmetric
periodic orbit to exist, arc (see Reference [16], Sectiond .52):

T, = O (93)
2y = O (94)
If k is evenand 2 = 2, the conditions may be simplified to:
2, = O (95)
:ifk/g = 0. (96)

Thus given o,&, = O, and afinal surface of section y;,there is only one condition to be met
to determine a symmnetric periodic orbit:

(20,0 ,C) = 0. (97)

Anupdate scheme may be derived from this equation which leads to convergence on a periodic
orbit if initially close to a periodic. orbit.
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Assumc that 2, and € are close to, but do not fulfill, Condition 97. Assumethcy arc
modified by dz, and dC' so that the condition is fulfilled. Using atruncated Taylor series
cxpansion yiclds the equation to be satisfied:

9(20,0, ¢) + gz|oda + g(,.lode = 0. (98)

In the above, the notation g, |, denotes the partial of g with respect tox and g¢|, denotes the
partial of g with respect to C, all evaluated at the noininal conditions z,,2,and C. Generally,
both partials of g will not be zero simultaneously. Thus there arc two update schemes available:

d(’ - _g(mo>0)(’) (99)
gC‘lo
de = _(1(1(0]?() (loo)

Repeated correction with these update schemes will lead 10 convergence on a periodic orbit in
most cases. Thepartials of g inay be inferred fromthe state transitionmatrix of the variational
cqualions integrated along the nominal orbit. in practice there inay be points where onc of the
pariials is zero. In thesc cases the other update schemme may be used.

9.3 Stability Analysis of Symmetric Orbits

Once a periodic. orbit has been found it is of interest to deterimine the stability of the orbit in both
thein-plane and out-of-planc directions.

9.3.1 In-Plane Stability

Consider the cqui-energy variation of the variables #,andz, about the fixed points of the previous
maps 91 and 92. Assume that the maps arc evaluated over one full period of tile orbit. The
equations of variation arc:

[ da ] _ [ 5 ] [ dz, ] (101)

day Jr  Us dz,

Inthe above, the partials f,, etc., are evaluated atthe initial conditions for the periodic orbit.
They are solved for from the state transition matrix of the variation equations integrated along the
periodic orbit. Note that f, = g;, a genera] property for syminetric planar orbits. Also note that
f2 - figr = 1 duc to volume conservation in phase space.

T'hus the dynamics of an orbit perturbed from a space-symmetric periodic orbit arc
described by the linear mapping:

day e Ji da,
. = . . 102
[ dzy ] 9r Je dz, (102)
Thelinear stability of the orbit is determined by the eigenvalues of this inatrix, computed
from the polynom ial:

M2 41 = 0. (103)

For stability, both roots to this equation must have unit inagnitude, i.e. |A|= 1. Thisresult occurs
if andonly if

-1< <1 (104)

‘1'0 evaluate the planar stability of anorbit,one need only determine the value f,.. For a

space-syminetric orbit the valuc & will be even and stability may be determined from the linear
mapping of y, 1o ¥kt/2 as detailed in Reference [7], Section 10.7.4.3.
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The stability of the orbit changes when f, passes through the val ues 4-1. A's will be scen, at
these critical values the family of periodic. orbits may interscet with another farnily of periodic
orbits.

9.3.2 Out-of-Plane Stability
Once the periodic orbit has been found the out-of-plane variation equation is fouud to be:
Z = Ve |0‘z (105)

where Vs,

o is @ time-varying periodic matrix. In state space formthe variation equations arc:

- [Am

Giventhe trajectory of the periodic orbit this linear equation may be integrated nuinerically to
find the state transition matrix fromy, to y; (the monodromy matrix). Again, the orbit, is
out-of-plane stable if the eigenvalues of the monodromy matrix have modulus 1.

9.4 Local Continuation of the Symmetric Family

Having found one periodic orbit, it is possible to compute other imeinbers of the same family. Wc
do not consider continuation in the o paramecter, although this could be done. We only consider
continuation in the (2,, C') plane and possible intersection with syminetric and non-symmetric
families of periodic orbits.

Consider the fixed point of the space symmectric periodic orbit:

2, = Jf(z,,0,¢) (207)
0 = g(2,,0, 0. (108)

To continue the family the tangent to the fainily at this point must be found. The tangent will
satisfy theequations:

de, = fedz, + [id2, + [c dC (209)
di, = gede,+ [rda,+ godC. (110)

Note that f,=g; as before. Also, fromn the space-symmetric prop erties of the orbit; the tangent
cquations should be invariant under a sign change of di,. This decouples the tangent equations as:

-1 fc dz, 0
[ 9s qg ] [ dC ] [ 0 ] (111)
L5 £ Jdie = [0 0] (112)

Recall the volume conservation relation
12— fige = 1 (113)

Note that the first tangent equation must be singular for a non-zero tangent to exist, inthe dz,, dC
plane. This equation is indeed singular, thus the additional relation:

gc(fr=1)=Jcga = 0. (114)

The tangent to the family will reside in the null space of the above equations 111 aud 112.
There are three different cases to consider: f, #1, f, = 1, f = --1.
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941 f,+ 1

There arc a number of implications which may be lain out ilnmediately:

i # 0 (115)
g # 0 (116)
(;( - fﬁl' (

First note that da:, = O as ils coeflicients arc non-zero. Thus, in this case, the family will not
interseet a non-symmnetric family of the same period.
The tangents to the current family arc,:

dz, = fﬁ%d() (118)
dr, = —%(-’d(}. (119)

These two tangents are cquivalent due to Relation 117. ‘Jbus, a tangent always existsinthis case
and defines the local evolution of the family. If f¢ = O thenge = O anddz, = O, but dC is frecto
vary. In this case, the tangent to the famnily is parallel to the C parameter and is norimnal to the 2,
variable,1.e. the Tamily is at a local extremmum with respect, tothea, variable. This situation
occurs imour results.

Thus, if fz# 1, the local continuation of the famnily as a space-symmetric famnily is always
dcfined and no intersections with families of the saine period occur.

942 f, =1
The tangent equations reduce to:
0 Je dz, = 0
o sl L] 1o @0
[+ 0]di, = [00]. (121)

Animmediate implication from Equation 113 is that:
9:J: = o (122)

In gencral, both of these values will not be zero at the same timne. Animplication from Equation
114 is that:

9:Jc = o (123)

Again,both of these values will not be zero at the same time (in general).

‘Jhere arc two situations to consider here: f; = O or g, = O. Wc assuine that these situations
arc mutually exclusive.

First consider f; = O and g, # O. Then f¢ = O also. Thetangent equations may bereduced

Lo:
godz, + godC = O (124)
0dz, = O. (125)
In this case a tangent, is dill definedinthe spat.e-sylnirrctjric family of orbits:
dz, = - -gﬁd(f. (126)
ES
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However the tangent direction di, is not unique, indicating that anintersection with a non-space
symmelric family of equal period has occur red.

Next consider g, = O and f; # O. Then f¢ and ge need not be zero, The tangent equations
become:

Odz, = o0 (127)
fedC = o (128)
ac dC = 0 (129)
fedia = o (130)

First note that the tangent de, = O. Thus intersection with anon-syminetric family of the same
period does not occur here. If f. = g. = O then both da, and dC' are free to vary and the tangent
is not uniquely defined. This indicates that the family has intersected with another
space-syminetric family of the same period. If either f¢ or g¢ arenot zero then the result dCC = O
follows. Then,in general, no intersection with another family has occurred and the tangent to the
family is parallel to the 2, axis and is normal tothe C axis, i.e.the family is passing through a
local extremuimn with respect tothe energy C.

9.4.3 f, = -1

From the previous analyses the local continuation of the space-syminetric family is well defined at
this critical point). ‘1’0 understand what occurs here consider the double com position of the
monodromy matrix, effectively turning the periodicorbit into a periodic orbit with twice the
period.

The tangent equations become:

[ 2072 - 1) fe(fe + 1)+ figc ] [ dz, ] = [ 0 ] (131)
2feg9: gc(fr+-1)+- gz fc d¢ 0

[ 2fcfs 2(f2=1) ]di, = [0 01 . (132)

For these cquations only thecase of f = — 1 is of interest. T'husthe equations reduce to:

0 Jige dx, 0
= 1
[ —2g, .qga-fc] [ dC ] [ 0 ] (133)
[ -2f: 0 ]dic = [00] (134)
T'he additional conditions are:

again both not zero at the same time.

If g, = O thendz = 0O, dC' = O and dz is arbitrary. ‘The]) intersection has occurred with a
spacc-symmetric family of orbits with twice the period of the current family. The intersecting
family is al. a local extremnum with respect to the energy.

If f# = O thendz is arbitrary and dm:%f(;d(f. Then intersection has occurred with a
non-space-sy mmetric family with twice the period.

in these cases an extremum of the single period family with respect to the energy cannot
occur as then f, = 1must have occurred, which contradicts the current hypothesis.

9.4.4 catalog of Possibilitics

Combining the above results yields a list of possible occurrences atthe critical points. Only generic
possibilities are listed.
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Joe=1,9-=0: If fc = gc= 0O, intersection with a space-syminetric famnily of the same period
has occurred. If either fc# O or g¢# O, then the family isat a local extremum with respect to C.

.= 1, f; = 0: intersection with a non-space-symnetric family of the same period has occurred.
7 s Ji 1 Y )

o = =1, g- = 0 Intlersection with a space-symmetric fainily of twice the period has occurred.
Jr = =1, fi = 0: Interscction with a non-space-symmetric family of twice the period has
occurred.

We do not. consider questions of continuation inthe out-of-plane direction, although they
may be of interest.

95 Presentation of Results

Meinbers of the family of orbits have been computed for various values of o. The familics are
presented as curves in tile (2,, C) spacein Figures 4 - 8. Figure 4 presents the curve for o= O.
The periodic Tamnily in this case is just a straight, line traveling with a constant velocity in a
downward direction for z, > 0. Note that this family intersects the coordinate location

2,= 0O, y, = O a C = O. Because of this intersection the analytic continuation of this family to

o > 0 is complicated and would have tobe studied with regularized equations of motion. An
alternative tothis would be to study the orbit using the Modified Hill equations where there is no
singularity as ¢ — O. Aninvestigation of the literature shows that this is a non-trivial case
(Reference [1 ]]). Note that allthe families are symmetric aboutx, = O, thus only the results for
zo, >0 arc given. Also, stability inthe following paragraphs means stability of the orbit in the
planc only. Qut-of-Plane stability is briefly discussed later. In Figures 5- 8,stable portions of the
families arc denoted by solid lines, unstable portions by dashedlines.

3

25

Figure 4: Symmnetric Periodic Orbit Family: o = O

As o increases from O the family evolves. The evolution of this family may be explained as
follows.
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9.5.1 o0>0

A few characteristics arc evident for all the families with non-zero o.First, as 2, -— oo the family
curves become parabolainthe (z,, C') space.

The families are al stable for sufliciently large z,. As 2, decreases the families become
unstable via anintersection with an asymmetric periodic orbit of twice the period
(fr = 1, f# = 0). Following this instability , the familics m ay be discriminated according to
whether or not o is small enough, as will be discussed in ainoment.

A commnon feature of al the familics is that they reach anextremum with respect to 2,
subsequent to their intersect ion with the asymmetric, doubly periodic orbit family. At, this
extremum g, = O while g¢ # O. After this extremun, the families have anincreasing #, while (¢
continues to decrease.

Following this, the famnilies again intersect an asymmetric doubly periodic orbit family
(Jo = =1, Ji= 0) and regain stability. Then the families reach an extremum with respect to C

(fr = 1,9, = 0, fc or ge # 0). At this point the family becomes unstable again. Subsequent to
this thie families begin to trace out a spiralin the (z,,C') plane. Anextremum with respect to z, is

followed by an extremum with respect to C, the process repeating indefinitely. After every local
maximum of C and before every loca minimum of C the families have smallintervals of stability.
These intervals decrease in sizc as the spiral grows tighter. It is conjectured that the spirals
continue indcfinitely.

Numerical continuation of the families becomes diflicult a this point due to several effects.
Duc to accuracy limitations it becomes difficult to trace out a family in such a sinall region of the
planc. Also, the periodie orbits inthis region sufler extremely close encounters with the ring
particles and may collide with them. ‘1’0 continue the family in this region would require that the
cquations of motionbe regularized against, collision, a procedure that hasnot beendone for this
analysis.

952 0<o <(71

Inanalyzing the periodic orbit families another important value of o has been found, denoted here
by u],. The value of o, has been computed to within

0.01282< o, <0.01283 (136)

and thus o7, < ops3.

For rings witho < o, there is an interesting occurrence in these periodic orbit families.
After the first intersection with the asyminetric double period family (when the family becomes
unstable for the first time as 2, decreases), the familics interscet an unstable | symmetric double
period family (fy = —1, g = O). The families then remain stable over aninterval. This interval
may include the first extremum with respeet to 2, but terminates before the next intersection with
the asymmetric double period family. The stable interval ends by re-intersecting the same
unstable, symnmetric double period family.In Figure 6 this unstable, symmetric double period
family is denoted by a dotted line.

If 0 < oy, the intervals between intersection with the asymmetric and symmetric double
period families become vanishingly small. As o grows larger the stable interval shrinks until
¢ = o5, when the unstable, symmetric double period family shrinks to a point.

The individual members of this stableintervalare quite interesting. Figure 9 shows a few
trajectories of members of thisinterval for e = 0.01. Note that these trajectories pass very close
to, and cven encircle, the stable equilibrium point /3. Every family in this group (¢ < 0y))
contains such orbits that encircle the /3 points. As they are stable orbits, they inay persist, under
siall perturb ations. Also, the fact that they come closc to astable equilibrium point introduces
some interesting possibilities concerning the manner in which a ring may gain mass. These
mechanisins are discussed in more detail in Section 10.
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9.5.3 o >0y,

For rings with a large enough value of ¢ the interval of stable orbits no longer exists. Current
studies have investigated these families up to ¢ = us at which the ringitself becoines unstable.

It is interesting to note that no intersections of the families investigated with syminetric,
single period familics were found. The only intersection with a symmetric family found were those
with the unstable, double period symmetric family for o < ¢;,. Furthermore, this intersection was
closed as the double period symmetric family only intersected the single period symmetric family
under consideration. The result being that these syminetric families of periodic orbits are isolated
from al other symmetric families of a similar period, forming a closed group. Verification of this
would require a completeinvestigat ion of the familics as o0 — O andinthe spiral region of the
familics.

9.6 Out-of-Plane Stability

The out-of-planc stability characteristics of these families have also been computed. It is found
that planar and out-of-planc stability coincide in most regions of interest: 2, >>0 andin the
“stable interval”. Theonly exception is within the stable interval where for a very smallsegment
the faimlics lose the out-of-plane stability, It is supposed that an intersection with an out-of-plane
periodic orbit has occurred at these points. Suchorbits would be of interest, to compute.

stable —
unstable ———
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I I
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Figure 5: Symmetric Periodic Orbit Family: ¢ = 0.001
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Figure 6: Symmetric Periodic Orbit Family: o = 0.01
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Figure 7: Symnetric Periodic Orbit Family: o = o4
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I0 Mechanisms for a Ring to Gain Mass

Combining the results of the study of Equations 72, some simmple observations inay be mnade
concerning the ability of a stableringto gain mass. These observations are conjectural in nature
and further analysis will be done to verify and/or refine them.

With such an elementary ring as being studied here there are only a few mechanisms by
which the ring may gainmass. The first. of these discussed has been discussed previously inthe
literature and, in general, would not apply to a riug as it lcads asympiotically to the condensation
of aringintoafew satellites (Reference [1 8]). The sccond of the mechanisms discussed is novel and
arises directly from the current analysis. This mechanisin may be apl)lic.able to rings as it provides
a mechanism by which a stable ring may gaiu tnass until it becomes sufficiently heavy (yet still
stable) at. which pomt the inechanisin ceases to exist.

10.1 Direct Mass Gain by Ring Particles

The first mechanism operates by assuming that the misting riug particles attract smaller particles
and, via inelastic collisions with thesmall particles, grow inmass.Interms of the original
forinulation of theinodel as 1' ring particles of mass yt each,the mass gt will increase andthe
number of particles 1’ will be fixed.

If continucd, the result of this mechanism will eventually be jt > jts and hence the P
particle ring will become unstable. Inthe absence of neighboring rings this configuration has its
greatest instability in the angular direction, hence instability willlead to collisions among the ring
particles (Reference [16], Section 3.4.10). Assuinethat with the passage of timethe ring is able to
re-stabilize itself. 1t is of interest to know whether the number and mass of particles has increased
or decreased.

Let the original, unstable, ring have P particles each of mass yi;, where ji; > fts(#1)-1f the
final, assumed stable, configuration has /%2 particles each of mass p, then the following mass
conservation law will hold:

wml, = ol (137)

Furthermore, the masses ji; and #2 can be related by a factor »: yig = 71 Thus P = 1/2Py.
Assume that the new ring is stable, iy < sts(F2). Next note that,:

ps(12) = zisqn 720 (138)
- Pus(P )

Thenit is easy to verify thatr» >1. Hlence 1'2<1’1 and ft2 > jt1, or to stabilize the ring
must rearrange itself into a riug with fewer, heavier particles. Iteration of this process would
reduce aring to a few, massive particles. At this point it should be noted that a classical riug (as
defined here) with P> <7 is always unstable, independent of the mass (References [10], [12], [13]).
However, for 1'$ 10 other stable, non-symmetric configurations exist. See Reference [1 2] for au
in-depth discussion of thedynarnics insuch asystem.

Fromthe shove discussion it is clear that such a mechanisin dots not apply to rings. It may,
however, apply to satellite forimation about a planct or a star.

10.2 Mass Gain About Stable Equilibrium Points

The second mechanisin is novel and arises fromn the current analysis. This mechanism is applicable
tothe study of ringsinthatit alows a ring to gaiu mass if sufficiently sinall,yet is also self-li]llitillg
inthat it docs not allow a ring to becomne so massive that it becomes unstable. The rudiments of

the theory are sketched here, yet require inore rescarch to verify andrefine the actual mechanisim.
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A1 the heart of this mechanism isthe supposition that astablering as posited here exists,
and that a suflicient ainount of simall particles orbit close to thering. As discussed in Section 9.3
there arc stable orbits which lic oneither side of the ring at a sufficient distance 2, from the ring.
Also, if ¢ < oy, therearcstable orbits which pass through the vicinity of the 3 equilibrium
points (whit.11 arc stable for this value of ¢). As observed inlFigure 9, these orbits intersect
themselves and each other inthe vicinity of the /3 points. Also important to point out is that tile
mirror images of these periodic orbits exist and will also interact, in the vicinily of the /73 points.
Thus, if siall particles follow these stable orbits, they arc giventhe opportunity to interact in the
vicinity of the /3 equilibrium points.

Assume a dissipalive interaction between the sinall particles inthe vicinity of the £/3 points.
A likely mechanism might be inelastic collisions. Thenthe kinetic energy of the particles with
respect totherotating ring will decrease, i.e. d7' < 0 where:

T = %(:i72+y2). (139)
With reference tothe energy integral (Equation 47) it becomes apparent that dC' >0, or that the
cnergy parameter C will increase. As seen on the periodic orbit family plots (Figures 5 and 6), this
will causethe energy of the simall particles to approach the energy of tile stable E3 point. The fact
that these periodic. orbits are slable isimportant as it alows for the particles to oscillate around
the families and to travel along the family curve as theenergy parameter C increases. As the
particles approach the gcometric position andthe encrgy value of the 23 points, it becomes
possible for them to become trapped about the stable equilibriuin point.

Continuing this process, the accumulated mass of thesmall particles al the E3 points may
increase to the point where the total inass in the vicinity of these points cquals . Then the ring
systemn is similar to the original system,although containing twice the particles. At this stage of
the scenario the ring particles are located at the coordinates (2x = O, yx = k, 2= O); k=0, &1,....
The equations of motion of a small particle are then:

F-2y = Vi
y+2e =V, (240)
z =V,
3, 1 o
Vie,y,z) = 2% — 2% 4 e
( ) 2 2 ,/132_*_312_* 22
e8]
1 1
+o ! - Ii (]4])
k=—oo \ﬂ?2+(k—y)2—+ 2?2 [kl
Note that the potential function is different from the onc givenin equation 73. To put these
cquations back into the standard form of the Close Ring equations make the transformation:
(x,y,2) iyl (142)
LY - S, 5% ).
/ 2" 3% %

In carrying out this transformation the parameter ¢ is modified and becornes 8¢. Thus the new
ring has cflcctively increased its mass parameter o by afactor of 8. The new ring has also
increased its region of influence, especially inthex direction where it has doubled via the scaling
transformation. Thus new regions of small particles adjacent to the ring are available to be
captured a the new stable E3 points.

Note that this process cannot be continued indefinitely. Starting fromn a ring with mass o,
at the nth stage of the cycle the ring mass parameter will have a value o, = 8"¢g. At some point
oy > oy, will occur. Thenthe proposed mechanism of deposition, the stable orbits which pass close
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to thestable /23 points, will cease to exist aud become unstable orbits. Also, as o, < ops < oy,
thering itself will still bestable at this point.

Thismechanism is attractive as it sketches out how a ring,once started, may grow insize by
capturing neighboring particles. Also, as it is a self-limiiting process, the end result is a riug stable
with respect to self-gravitation.

With the basic mechanisin sketched out, it also becomnes apparent what issues must be
addressed to verify the assumptions and to refinethe process. A few of these items are listed below:

« Derive plausible mechanisims for particles to juinp from the stable periodic orbits encireling
123 to orbits trapped near /3. Possible mechanisins include collision effects, viscous effects,
or sdf at, traction of the particles going through the dow portion of the orbit encircling E3
(note that the kinctic energy is mininized along this portion of the orbit). Any mcchanism
that dissipates velocity while the particle is encircling 123 may be a candidate mechanism.

« Study the stability of a hybrid ring solution described as follows. Consider thenominal ring
solution of P?particles of mass y. Consider the hybrid solution defined by introducing P
additional particles, of mass less than i, in the vicinity of the /23 equilibrium point. It cau
be shownthat such a solution exists. T'wo limiting results for such a systein arc already
known. If the additional 1’ particles are massless, then the upper bound on y¢ for the riug to
be stable is %Ils(]))~ If the additional I’ particles have mass y, then the upper boundon
for the ring tobe stable is -]g/ts(]’)- A rcasonable conjecture is that the upperbound for
stability intheintermediate cases will vary continuously from the one litnit to the other.
Nonetheless this must be verified.

« The Close Ring equat ions of motioncanbe easily modified to model the hybridring case
mentioned above. What must, beinvestigated is whether stable periodic orbits still exist,
whit.]] can deposit, particles onto the smaller inasses, eventually increasing their mass till they
arc approximately equa to the original ring particle mass.

« Notethat the above hybrid ring cases may uot needto be considered if the particle accretion
rate at /3 is fast enough. If this is so, then the time frames involved inay be short enough so
that the hybrid case never has opportunity to aflect the mechanism. Thus, some neasure of
the time required for particle accretion is required.

11 Conclusions

A sunplified dynamicalmodel has been derived which describes the dynamnics of small particles as
attracied by aring. Iinportant results include a rigorous modification to the Hill equations of
motion which includes the effects of neighboring particles. Also, a substantively new model for the
motion of small part, icles close o aring is derived and examined. Thisinodel does not include
non-gravitational forces which may play an important role in particle dynamics near a ring. Using
this newnodel, a possible mechanisin for riug growth was identified. Thismechanism is of interest
as it is self-lilnit,ing inthatit ceases to operate whenthe ring becomes heavy enough, yet while the
ring is still gravitationally stable. Future issues toinvestigate are also identified.
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A Application of the Limit in the Close Ring Equations

In this appendix the limit describedin Section 4 is appliedio the ring force terms (Kquations 29 -
31), yicelding the modified ring force terms (Equations 34- 36).
The limit is applied using the following result for a fixed integer k:
sin Ok

lim —
6—0

k. (143)

Using this liinit the following results hold:

I sin® 0k

o0 (1)
. smOkcos Ok
gur(x)—k——’ k (145)

2k 2
- . — 72 T 52
gmé |1k| = 4 4 (X 173 y> + 2z (146)

4sin?0k  Asin Ok
02/3)(2()2 - al/sx()
The problem in applying the limit to the summation is that there are always values of &

large enough (on the order of 1°/2) so that the limit 143 is invalid. It is seen, however, that the

contribution of thesc terms tothe summations will vanishunder application of the limnit. Consider
the worst case scenario. Let I?=2rand k = r. Then for 8 << 1 the approximate results are:

I _ ov¥x 3

P () cee

where

(Fcos Ok - EsinOk) + &2 4 g2 + 22 (147)

v |

Using the limit approximation (Equation 143) the approximate value is:

1 _ ox® 1

Wl T s

Consider thedifference of these terms:

ox® (W)S |

87>3 2
As the paramecter » — oo the difference between these terins goes to zero.

The more general result is derived as follows. For al finite values of %, ¢,z and for k large
enough and O small enough the quantities |r;] take on the asymptotic form:

2 sinOk

o3y 0
Since it is under these conditions (k large) that, the limit dots not hold it is of interest to compute
the basic summation:

., 2,08
S = 4 0
%‘ K Z anor T OO (151

using both the limit approximation and exact, asymplotic results. Using Approximation 143 the
result is

2,08
lim '— = 2
2 e = %) (152

(149)

x| = (150)

29



where ((n)} is the Riemann Zeta formula as described previously.
Now consider the exact result,. IYirst the summation may be rewritten as:

pP-1

e, g8 0
. = - 153
%‘ sin® 0k 2}: sin® 0k (153)

Trigonometric substitution will show that:

r-1
> esc Ok. (154)
!

-1 P-1
1

Zl: cse® Ok = % 21: cseS Ok(1 + cos? ok) + 5

T"hese sums may be found asymptotically (Reference [1 3], Appendix):

r-1

; csc® 0k(1+ COS0k)= 4(0(33) + O(1/0) (155)
gl 1 dexp
Yoese Ok = - Iog( 1 7) +0(0). (156)

1 0 0
‘1'bus:
T2 , 03 )
e = 2<(3)+ O(6°).
;Sinad()k )+ 0(0%) (157)

Applyingthelimit O — O then yields the previous result, establishing the validity of the limit.
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